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Abstract

The recently developed method of embedding the solution for a semi-infinite flat and rounded punch (�inner�
asymptote) into the solution for a semi-infinite square-ended punch (�outer� asymptote) in order to solve a number of

notionally complete contact problems, where in practice, a finite radius is present is extended to cases where friction

arises. The first case considered is when the slip zone is large compared with the size of the process zone, and extends

into the flat portion of the contact. The second problem is when the slip zone lies wholly within the curved portion of

the contact. Here, the inner asymptotic solution is modified to allow for partial slip providing a universal solution for

this class of problem, and a comparison with the outer solution is made.

These techniques show that the conditions prevalent in the process zone of any notionally complete frictional contact

can be accurately represented by recourse to the inner and outer asymptotes, thereby eliminating the need to solve the

full finite contact problem explicitly; only the corresponding complete, adhered problem must be solved numerically.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Fretting damage is often found adjacent to the edges of notionally �complete� contacts. For example, if a

flat-ended indenter is pressed against a block of similar material and an oscillatory shearing force applied, a

narrow ring of �cocoa� will subsequently be founded around the periphery. A simple idealised analysis of the

problem assuming a rigid circular punch pressed onto an incompressible half-space suggests a different

response: the contact pressure, pðrÞ, is of the form
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where P is the applied load and a is the radius of the indenter. The shearing traction distribution corre-

sponding to a rigid-body tangential displacement of the surface is of the same form, and it follows that if

the shearing force, Q, is less than fP , where f is the coefficient of friction, there will be adhesion everywhere.

When the applied shearing force reaches the limiting value slip ensues everywhere, and there is, apparently,
no stable partial slip regime. Of course, one idealisation which is being made is in the choice of elastic

constants of the contacting bodies, which must be done in order to apply half-space theory rigorously, and

to ensure that the direct and shearing components of traction are uncoupled. A numerical solution of the

equivalent problem with elastically similar bodies will give rise to a very narrow band of slip, but this would

be significant only very close to the sliding state. A second phenomenon of practical relevance is the in-

evitable presence of a slight radius around the periphery of the indenter, and it is the influence of this which

we wish to explore in the present paper, using a development of recent asymptotic solutions for contact

problems.
The use of asymptotic ideas to obtain efficient solutions for the stress state adjacent to the edge of

complete or almost complete contacts has been developed in recent years, using, as a basis, the classical

solutions for sliding wedges developed by Gdoutos and Theocaris (1975) and Comninou (1976). These

solutions, which include the possibility of allowing for elastic mismatch, apply whenever the contact is truly

complete, and have been applied to fretting problems successfully (Mugadu et al., 2002; Mugadu and Hills,

2002). One obvious question which arises when using this technique is how big a finite edge radius may be

before the singular solution becomes invalid. This has been answered in the case of frictionless contacts by

employing an asymptotic solution in the form of a semi-infinite flat and rounded punch (Sackfield et al.,
2003). The paper should be consulted for the full details of the philosophy behind the method, but the

essentials emerge from a consideration of the following four problems: (i) a notionally sharp square-ended

finite rigid punch (in general of arbitrary planform). (ii) A punch of the same general planform but in-

corporating a very small edge radius, R. A solution may be found to problem (ii) using the solution to

problem (i) alone, but employing the two following asymptotic solutions, of a completely general nature,

and with exact closed forms, as a vehicle to move from one to the other.

(1) A semi-infinite square-ended rigid punch, and we shall denote this the �outer� asymptotic solution. The
contact pressure distribution for this configuration may be written in the form
pð

pð
x1Þ ¼
K�ffiffiffiffi
x1

p ; ð2Þ
where x1 is a coordinate measured from the contact edge, and K� is a scaling multiplicative constant,

analogous to the role played by the stress intensity factor in fracture mechanics. In the neighbourhood

of the corner of the sharp punch (problem (i)) the contact pressure varies in this way, and hence the

value of the generalised stress intensity factor, K�, may be found by matching the two solutions in this

region.

(2) The second asymptotic solution (�inner� solution) is that for a radiused semi-infinite flat and rounded

punch, Fig. 1(a). The contact pressure distribution for this problem may be found from that for the

finite flat-and-rounded punch Ciavarella et al. (1998). In the coordinate set shown the contact for a
punch having a contact half-width b is given by
x1Þ ¼ � E�
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where E� ¼ E=ð1� m2Þ, E being Young�s modulus and m Poisson�s ratio. If, now, the limit b ! 1 is
taken and the scaling constant K� introduced, defined by
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Fig. 1. Schematic of a semi-infinite flat and rounded punch in: (a) full sliding and (b) partial slip.
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we find that, after some algebra
pðx1Þ ¼
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If x1=d � 1, i.e. if the point under consideration is sufficiently remote from the contact edge, the pressure

varies in the same form as that implied by Eq. (2), whilst, if 0 < x1=d 
 1, i.e. the observation point is very

close to the edge of the contact, the pressure varies in the form
pðx1Þ ¼
3K� ffiffiffiffi

x1
p

d
: ð6Þ
It may be seen that, if the �inner asymptote� (the solution for the semi-infinite radiused punch) is scaled so

that it matches the �outer asymptote� (the solution for the semi-infinite square ended rigid punch) at large

values of x1, (and this is done simply by matching the values of K�) the solution to the finite, almost

complete problem (problem (ii)), may be found without further calculation. Implementation of this result

requires the use of the contact law for the inner asymptote, which after some manipulation to interchange

the dependent and independent variables is given by
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2R2K�2

4E�2
3

r
; ð7Þ
where R is the radius of the curved portion of the contact.
The intention in the present paper is to extend these results to the case when frictional effects are also

present. First, modified forms of the asymptotic solution for the semi-infinite rounded punch will be found

for both locally sliding and local partial slip conditions, and these will be employed to solve a range of

frictional contact problems involving notionally complete contacts. In all cases it will be possible to de-

termine the stress state adjacent to the contact edge, and therefore to establish the nature of the process

zone where cracks initiate, and to do so without having to solve for the state of stress in the actual body;

this will be provided by the asymptotic solution. Further, it will not be necessary to solve the nearly

complete contact problem in order to determine the stick/slip distribution. This may be found from the
corresponding finite contact problem which is truly complete in nature (when the slip zone encompasses at

least part of the flat portion of the contact), whilst in other cases even this may not be needed: if the stick
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zone persists into the curved part of the contact face the extent of the slip region may be found from the

asymptotic solution itself, and only the adhered form of the finite, complete contact problem will be needed.

The practical application of this solution is to the characterisation of the process (plastic) zone adjacent

to the contact edge, where cracks nucleate. Its power is that, in cases of macroscopic partial slip, all local
detail may be included trough the asymptote.
2. Asymptotic solution

The first stage in extending the technique is simply to extend the asymptotic solution itself. The problem

to be solved is shown in Fig. 1(a). It shows the same semi-infinite flat and rounded punch subject to both

normal and shearing loads, the ratio between the two being the coefficient of friction, f . Note that the

sliding asymptotic solution generated in this way will turn out to have applications in both macroscopically

sliding finite contact problems, and to those suffering partial slip, but where the slip region engulfs a large

region of the interface and penetrates significantly into the flat region of the punch face. There is little which

needs to be added to the solution presented in the Introduction for a punch giving rise to direct tractions

alone, save that the shearing traction, qðx1Þ, is everywhere equal to �fpðx1Þ. Also, the Muskhelishvili
potential for this problem is determined in the usual manner from the definition
Uðz1Þ ¼
1� if
2pi

lim
b!1
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; ð8Þ
where z1 ¼ x1 þ iy1. Substituting in from (5) we find
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We turn, now, to the asymptotic form when the stick region extends into the curved part of the contact,

as shown in Fig. 1(b). For this case we may write down the resulting shear traction distribution using

Ciavarella�s theorem (Ciavarella, 1998a,b): we need to superimpose a second shear traction distribution (a

perturbation, q0ðx1Þ), present over a reduced region, the new stick zone, on the sliding shearing traction
distribution. The perturbation has the same form as the contact pressure distribution, but is due to a

smaller applied load, P 0
q0ðx01Þ ¼
3K�0f
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where x01 and d 0 are here measured from the slip–stick transition point, and K�0 is due to the adjusted

�corrective� load P 0. Eq. (10) is scaled appropriately in magnitude by using the contact law (Eq. (7)), and

from the application of tangential equilibrium, we may determine the size of the stick region, d 0, as
d 0

d
¼ 1

�
� Q
fP

�2=3

: ð11Þ
This then allows us to write Eq. (10) in terms of the global parameters. Fig. 2(a) shows a plot of the

resultant shear traction distribution as a function of Q=fP , and Fig. 2(b) shows the size of the stick zone,

also as a function of Q=fP . Included in the latter plot, for comparison purposes, is the corresponding stick

zone size for a finite flat-and-rounded punch Ciavarella et al. (1998). It may be seen that the stick zone size

in the finite contact is only very slightly different from the semi-infinite contact if a=b > 0:9, where a is the
flat portion half-width and b is the contact half-width.



10 2 3 4 5

normalised distance from the contact edge, x  /d
1 

0.5

1.0

1.5

2.0

2.5

3.0

Q/fP = 0.1,0.2,0.3,.....,1.0

(2 R/E d)q(x )π *

1

sh
ea

ri
ng

 f
or

ce
, Q

/f
P

stick zone size, d/d'

a/b = 0.9,0.91,...,0.99

a/b: ratio of flat to contact semi-widths

no
rm

al
is

ed
 s

he
a 

tr
ac

tio
n 

di
st

ri
bu

ito
n,

semi-infinite punch
finite punch

0.2

0

0.4

0.6

0.8

1.0

0.9 0.92 0.94 0.96 0.98 1.0

(a)

(b)

Fig. 2. (a) Plot showing the shear traction distribution as a function of Q=fp for a semi-infinite flat and rounded punch and (b) plot

showing the stick zone size as a function of Q=fp for the semi-infinite and finite flat and rounded configurations.
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3. Applications

The solutions developed in the previous section will be applied to three classes of contact, and these are

shown schematically in Fig. 3. It is emphasised again that the techniques described may be applied to any

contact which is notionally complete, locally two-dimensional in nature, and exhibits a square-root sin-
gularity. The classical square-ended finite contact is used purely as a vehicle to display the results, and

similar procedures may be applied to punches with internal voids, or which are multiply-connected, or

having a combination of abrupt and smooth edges.

The three classes of responses which we identify are: (a) when the macroscopic punch is in sliding, and

the sliding asymptotic solutions may be applied directly, (b) when the contact is in partial slip but the slip
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Fig. 3. Schematic of a flat punch with rounded edges under: (a) full sliding; (b) partial slip with the slip zone extending into the flat
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zone extends well into the flat portion of the punch face (here too the sliding asymptotic solutions may be

applied), and (c) when the contact is in partial slip but the slip zone is contained wholly within the radiused

portion of the contact profile, and here we compare the partial slip �inner� asymptotic solution with the

�adhered� outer asymptotic solution. The solutions to these three classes of contact will now be presented

in detail.

3.1. Sliding contact

The first problem we wish to consider is that of the sliding square-ended punch. It is assumed that the

punch is rigid and the contacting half-plane is incompressible so that the direct and shear tractions are

uncoupled, and each behaves in a square-root singular manner. In this, and subsequent problems, the first

part of the procedure is to determine the macroscopic sharp contact pressure distribution, and then to

collocate the semi-infinite square ended punch solution with the local contact edge pressure field, thereby

giving the value of the generalised stress intensity factor, K�. This part of the solution follows exactly the

same procedure as that for the frictionless punch, described in Sackfield et al. (2003).

The next step varies from problem to problem, but here we simply record the Muskhelishvili potential
for the asymptote, and hence deduce the stress field adjacent to the contact corner from which the local

plastic or process zone may be found. The validity of the plastic or process zone as calculated from the

singular field has two limits; an upper limit which corresponds to small-scale yielding in fracture mechanics,

and where higher order terms associated with the presence of remote boundaries begin to have a significant

effect on the shape and size of the process zone, and a lower limit, where the effects of the radius present at

the contact corner start to be felt.

It will be recognised that the lower limit is determined by comparing the two asymptotic fields alone (the

�inner� and �outer� solutions), and is therefore universal in nature, whereas the small scale yielding limit is
geometry dependent, and therefore no general conclusions can be drawn. In the case of a frictionless
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contact, it proved impossible to determine explicitly conditions under which the elastic hinterland of the

perfectly sharp and radiused semi-infinite solutions matched to within a given tolerance Sackfield et al.

(2003). This was because, in the absence of friction, and given that the half-plane is assumed incom-

pressible, the surface does not yield, so that all the plastic yield fronts converge at the contact edge. In light
of this, it was not possible to determine a plastic zone contour which completely encompassed any given

error contour. Therefore, we had to be content with displaying the implied shape and size of the process

zones for the two problems, to highlight their similarity.

Here, however, it will transpire that a much stronger statement of the closeness of the two solutions is

feasible, because it is possible to provide a very close comparison of the two semi-infinite fields rigorously.

Fig. 4(a) displays this comparison for a sample coefficient of friction, viz. f ¼ 0:6. The plot includes two sets

of contours. One is the size and shape of the process zone for a given applied load, as implied by the inner

solution, and we define a dimensionless load parameter, K ¼ K�=k
ffiffiffi
d

p
, where k is the yield stress in pure

shear. The other set of contours gives the explicit fractional difference (as a percentage) between the inner

and outer asymptotic solutions using the von Mises� yield parameter, ð
ffiffiffiffi
J2

p outer �
ffiffiffiffi
J2

p innerÞ=
ffiffiffiffi
J2

p outer
, as a

measure of the stress state. Of course the discrepancy between the two solutions increases as the contact

edge is approached, and the two solutions converge as the observation point becomes more remote. Thus,

for example, to ensure that the elastic hinterland matches everywhere to within 5%, and with a coefficient

of friction of f ¼ 0:6, the minimum load which may be sustained is
Fig. 4.
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Kmin ¼
2E�K�2

3pRk3

� �1=3

¼ 13:5; ð12Þ
where d has been replaced using Eq. (7) above. It is emphasised that this comparison is universal, in the

sense that the outer asymptote may now be installed in any appropriate finite complete sliding punch edge,

through appropriate choice of K�.
0

-2

-4

-6

-8

-10

-12

-14

0-5-10 5 10

13.5

12

10

5%

-5%

-5%

1%

1%

-1%

-1%

-1%

1%

0%

0%

0%

6
5

4

2

5

y /d1

x /d1

(a)

0.2 0.1 0 0.1 0.2
-0.5

-0.4

-0.3

-0.2

-0.1

0

--

-30% -20%

-10%

-5%

2%
3%
4%

5%

-1%

1%
0%10

8

5

3

3

2.6

2

1.5

y /a1

x /a1

-2%

(b)

plastic yield fronts contours

comparison contours

Plot showing: (a) the discrepancy between the �inner� and �outer� asymptotic solutions, ð
ffiffiffiffiffi
J2

p outer �
ffiffiffiffiffi
J2

p innerÞ=
ffiffiffiffiffi
J2

p outer
, and the

yield fronts based on the inner solution, as a function of K and (b) the discrepancy between the semi-infinite square ended and

unches, ð
ffiffiffiffiffi
J2

p full �
ffiffiffiffiffi
J2

p outerÞ=
ffiffiffiffiffi
J2

p full
, and the plastic yield fronts, P=ak, based on the full field solution. Both plots are for f ¼ 0:6.



392 A. Mugadu et al. / International Journal of Solids and Structures 41 (2004) 385–397
We turn, now, to a consideration of the upper load bound, or �small scale yielding� limit. In order to do

this we compare the solutions for the semi-infinite square ended punch and the finite square ended punch.

As stated, this is geometry specific, and so here the measure of the load is the dimensionless ratio P=ak,
where a is the punch half-width. Two families of contours are displayed in Fig. 4(b), and these are ana-
logous to those used in Fig. 4(a); one family shows the location of the plastic yield fronts as implied by the

elastic finite punch solution (full field solution), whilst the other shows the fractional discrepancy between

the semi-infinite and finite punch solutions using the von Mises� parameter, ð
ffiffiffiffi
J2

p full �
ffiffiffiffi
J2

p outerÞ=
ffiffiffiffi
J2

p full
, for a

sample coefficient of friction, viz. f ¼ 0:6. As an illustration in the use of this figure, if f ¼ 0:6 then the

upper load bound such that conditions of small scale yielding are satisfied to with a 5% tolerance is

P=ak ¼ 2:6. The two bounds may conveniently be displayed on the same figure. First, the lower bound

solution is made specific to the square-ended punch problem by particularizing the stress intensity factor

solution, i.e. here putting K� ¼ P=p
ffiffiffiffiffi
2a

p
, after which the dimensionless quantity, Rk=E�a, is defined with the

aid of Eq. (7). The two bounding values on the load may then be compared directly, and these are shown in

Fig. 5(a) for f ¼ 0:3, and Fig. 5(b) for f ¼ 0:6 and 0.9.

As an illustration in the practical use of the above results in predicting the upper and lower load bounds,

consider the case of a nominally flat pad with a ¼ 5 mm. Assume that the material has an elastic constant

E� of 112 kN/mm2, a yield strength in shear, k, of 475 N/mm2, and that the coefficient of friction is 0.6. If

the pad radius were 10 lm, and the maximum tolerable discrepancy is 5% then Kmin ¼ 13:5. The lower load
bound is then found from the following equation:
P P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3RaðpkKminÞ3

E�

 !vuut : ð13Þ
With the quantities used for this example, we obtain Pmin ¼ 3309 (N/mm). The upper load bound is found

by noting from above that P=ak ¼ 2:6 (for f ¼ 0:6) so that Pmax ¼ 6175 (N/mm). If, on the other hand,
f ¼ 0:9 then we have Kmin ¼ 7:0 for a tolerable discrepancy of 5%, and this translates into a lower

load bound of Pmin ¼ 1236 (N/mm). For this coefficient of friction, P=ak ¼ 2:0, and leads to Pmax ¼ 4750

(N/mm).

These results for the lower load bound should be compared with those obtained in (Sackfield et al., 2002)

where the lower load bound was found by comparing the finite flat-and-rounded punch and the �outer�
asymptote to give Pmin ¼ 3919 and 1259 (N/mm) for f ¼ 0:6 and 0.9, respectively. Clearly, the two ap-

proaches to predicting the lower bound load produce different results. This is to be expected since in

Sackfield et al. (2002), the effect of higher order terms on the square-root singular stress field is to alleviate
the stress state. It follows that comparing the two asymptotic solutions eliminates the influence of higher

order terms remote from the contact edge. This becomes obvious when one notes that the region over which

matching to a specified discrepancy is achieved is closer to the contact edge for larger values of f , i.e.
smaller values of Kmin, and hence the influence of higher order terms becomes negligible.

Lastly, the current approach provides a lower bound to predicting the minimum allowable load. This

clearly introduces a modest uncertainty in the solution, in the sense that an upper bound to the minimum

load would be preferable. However, in practice, in the problems treated so far the discrepancy is small in

comparison with the tolerance set for the asymptotic solution itself.
3.2. Partial slip: extensive slip region

The next problem to be considered is when the contact is suffering partial slip, and the slip region extends

well into the flat part of the punch face. In practice, this situation is most often brought about when a
tension is applied in the half-plane synchronously with the shearing force, and under conditions of pro-
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portional loading. This problem has been considered in some detail Navarro et al. (2003), but here, we shall
simply reproduce the relevant results.

Note that the extent of the slip zone is determined by the ratio roa=Q, where ro is the bulk tension, and

that, although the macroscopic contact is in partial slip the region attached to the punch corner is in sliding,

so that the appropriate asymptotic solution here is again one of sliding, as presented in the previous section.

It follows that, ceteris paribus, the state of stress adjacent to the contact edge is independent of the

magnitude of the shearing force, provided that the region over which the overall (finite) contact is suffering

slip is much greater than the size of the domain over which the asymptotic solution is to be applied.

This raises the question of the quantities determining the bounds of the validity of the slipping
asymptotic solution. Suppose that we use the sliding asymptotic solution to characterise a process zone

which is ideally due to the sharp-edged solution. It follows that the lower bound for the acceptable load for

this to be so is again determined by the comparison of the �inner� and �outer� asymptotic solutions, exactly

as in the previous section, and no further qualification is needed. However, the upper bound to the load is

now more restricted: in the sliding problem the feature which would cause a significant deviation from the
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semi-infinite solution (�outer� solution) is the presence of the far boundary of the punch. Here, it is the stick–

slip boundary which is not properly represented in the sliding asymptote (�outer� solution). It follows that
the �small scale yielding� limit may now be found by comparing the sliding square-ended punch asymptotic

stress state with the finite square-ended punch in partial slip.
Another feature of this solution which merits comment is the influence of the bulk tension on the stress

state adjacent to the punch corner. There are parallels with the effect of the �T-stress� in fracture mechanics,

but in the presence of a finite radius at the contact edge, we would expect the effect to be more severe. We

note that under these conditions the characteristic stress state becomes bounded as the punch corner is

approached, and we therefore anticipate a greater influence on the range of loads which can be tolerated.

The equivalent problem in fracture mechanics would be that of a rounded-end crack. If we were cha-

racterising the process zone simply by the singular square-ended solution, we might expect the bulk stress to

produce only a moderate, short-range influence. However, at any finite distance from the singular point, the
influence of the bulk tension would become significant. Additionally, an indication of the influence of the

bulk tension can be found by comparing the direct stress parallel to the free surface of the half-plane in

the absence of bulk tension with the magnitude of the bulk tension. Fig. 6 shows the comparison between

the �outer� asymptote and the finite square-ended punch in partial slip under the following conditions;

roa=Q ¼ 1 so that the stick zone lies in the region �0:2736 x6 1, i.e. it is attached to the right hand edge,

and with a coefficient of friction of f ¼ 0:6. We note that the upper bound on the applied load such that the

conditions of small scale yielding hold is given by P=ak ¼ 0:24, where the tolerable discrepancy is set to 5%.

This is significantly lower than the upper bound without bulk tension, viz. P=ak ¼ 2:6 (Fig. 4(b)), con-
firming that in this case, the influence of the bulk tension is significant.

Lastly in this section we turn to the question of the effect of the edge radius on the location of the stick–

slip interface. The thesis we defend is that the partial slip problem is very adequately represented by the

square-ended punch problem, and that it is not necessary to determine the effect of the edge radius on the

location of the stick–slip boundary. In general this phenomenon would be quite difficult to gauge, but the

partial slip solution to the finite flat-and-rounded punch is available in this instance Ciavarella et al. (1998).

3.3. Partial slip: small zone of slip

In the absence of bulk tension, the application of a shearing force, Q, to the square-ended finite punch

always leads to apparent adhesion everywhere, if Q < fP . On the other hand, the presence of a small radius
at the edge of the contact will always lead to a very small region of slip, confined to a strip within the

radiused portion of the contact. This may be analysed using the solution for the adhered outer asymptote

together with the partial slip asymptote without recourse to further calculation. As before, K� is found by

collocating the �outer� asymptote with the pressure distribution due the finite adhered square-ended punch.

When once this is done the complete local stress state may be found simply from the asymptotic solution

itself. As mentioned above, the upper bound to the domain of validity of this solution is again determined

by geometrical considerations, as the asymptote correctly incorporates the presence of the entire stick

region.
The question which arises is the magnitude of the process zone which may be appropriately represented

by the �outer� asymptotic solution to within a given tolerable discrepancy. As in the case of the frictionless

punch, Sackfield et al. (2003), it is not possible to define a yield front based on the �inner� solution that

completely encompasses any given tolerable discrepancy. Therefore, we shall be content to simply display

the yield fronts due to both asymptotic solutions so as to show their similarities. Before proceeding, it is

noteworthy that there is some ambiguity in the relative lateral position of the two sets of contours, since we

might (for example) identify the corner of the sharp punch with the end of the flat section of the rounded

punch, or with some other point in the curved portion of the contact. Assuming the material to be
homogeneous, failure may be influenced by the size and shape of the failure zone, but not by its lateral
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position. We have therefore plotted Fig. 7 so as to achieve the best fit at large values of the loading

parameter. These figures show plots of the yield fronts as defined by the two asymptotic solutions (the dashed

contours correspond to the �outer� solution) for a sample coefficient of friction, f ¼ 0:6. Fig. 7(a) corre-
sponds to the case when Q=fP ¼ 0 so that no shearing tractions arise. This figure is similar to that shown in

Fig. 5 in Sackfield et al. (2003), and we note that both asymptotic solutions are practically identical for
2E�K�2

3pRk3

� �1=3

> 3:3: ð14Þ
In Fig. 7(b) we have Q=fP ¼ 0:05, and we note that in this case the two solutions are practically identical

for
2E�K�2

3pRk3

� �1=3

> 6:7: ð15Þ
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Note that in plotting Fig. 7, a greater lateral displacement (within the curved portion of the contact) was

required for Fig. 7(b) than for Fig. 7(a). Therefore, as Q=fP increases, a larger load is required so that the

two asymptotic solutions match to within a given tolerance.
4. Conclusion

The method of embedding the solution of a semi-infinite flat and rounded punch (�inner� asymptote) into

the solution for a semi-infinite square ended punch (�outer� asymptote) has been extended to the case of

nominally complete frictional contacts. It is emphasised that the comparison between these two solutions is
universal, and holds for any nominally complete frictional contact exhibiting a square-root singularity. It

was noted that the finite square-ended punch was used purely as a means of demonstrating the applicability

of this approach, but that the finite punch could have had any planform. The comparison between the two

asymptotic solutions sets the lower bound to the acceptable load such that the process zone conditions are

dictated by the �outer� asymptotic solution. The validity of the outer asymptote is found by recourse to

the assumptions of small scale yielding, and is geometry dependent. This sets the upper bound on the

acceptable load.

This approach was used extended to two nominally complete frictional contact problems, without the
need to solve them explicitly. The first problem considered was when the slip zone is large, and extends into

the flat part of the contact. This necessitates the presence of a bulk tension in the half-plane, whose in-

fluence was shown to substantially alter the upper bound to the acceptable load, whilst the lower bound

remained unaltered. The second problem was when the slip zones lies wholly within the curved portion of

the contact. Here, the inner asymptotic solution was modified to allow for partial slip, and a comparison

between this solution and the adhered outer asymptotic solution was made.
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The results presented in this analysis form the basis of a nested asymptotic procedure for defining the

load range where a strictly square-root singular local elastic stress field continues to apply, under frictional

conditions. This therefore provides a means of defining the process zone in terms of a single parameter,

the generalised stress intensity factor.
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